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  E: Regression

Figure 4: Learning performance and pattern difficulty estimates. A: A matrix indicating whether or not a participant managed to learn
a pattern. Participants (columns) are ordered by their performance. Patterns (rows) follow the same ordering across all four plots. B:
Percentage of participants who learned the pattern. Dashed lines show estimates expected under chance performance. Error bars represent a
bootstrapped 95%-confidence interval. C: Percentage of correct predictions within a pattern. D: Estimated point of insight, that is the point
starting at which all following predictions were correct. E: Pattern learnability estimated with a logistic regression based on pattern program
features such as compressibility.

the point of insight at which the participant presumably “un-
derstood” the pattern were steps 2, 2, 7, and 9, respectively.
Excluding cases where people had no point of insight, peo-
ple’s average point of insight was at step 5.22. Reaching this
average or lower by chance was very unlikely in simulations
with random predictions, p < .001. The average point of in-
sight in the simulations was 9.93. In the following section,
we investigate which patterns were learned faster than others,
and what made them more difficult to learn.

Pattern difficulty The successful learning of a pattern was
operationalized as a participant making a correct prediction
for at least the last two steps of the pattern sequence. The
chances of this to happen by chance were slim (0.36%). On
average, participants learned 10.6 of the 19 patterns, a perfor-
mance that was vastly superior than chance, exact binomial
test: p < .001.

Figure 4A gives an overview of which patterns were
learned by which participant. As the figure shows, our pat-
terns covered a wide distribution of difficulty, ranging from
easy patterns such as the “line”, which was learned by nearly
all participants (95%), to difficult patterns such as “delivery
guy”, which was only learned by a few participants (18%).
Participants varied greatly in their pattern-learning perfor-
mance, ranging from the best participant, who learned all pat-
terns but one, to the worst, who learned none. Interestingly,
we found a highly systematic relationship between individ-
ual patterns and participants’ performances. We could have
found that participants vary largely in which patterns are easy
or hard to learn for them, or that there are clusters of patterns
that are only learned by subsets of people. However, after
sorting participants by performance and patterns by difficulty,
we can see a diagonal emerging (from top left to bottom right
in Fig. 4A), indicating that participant skill and pattern diffi-
culty are indeed two latent variables interacting: Difficult pat-
terns tended to only be learned by skilled participants, while
less skilled participants only learned the easier patterns.

Figure 4B shows pattern difficulty estimated from partici-

pant data. More difficult patterns were learned by fewer peo-
ple, had fewer predictions correct (Fig. 4C), and later points
of insight (Fig. 4D). These measures strongly agreed with
each other (rank correlations r from .93 to .85, with negative
transformation for the “point of insight” measure), corrobo-
rating our pattern-difficulty estimation.

What makes patterns more difficult to learn? In our fi-
nal analysis, we were interested in predicting pattern diffi-
culty from the features of their specific graphical programs
(cf. Fig. 1). For each pattern program, we counted the oc-
currences of turn, repeat, and i, the number of explicitly
coded appearances of the mole (i.e., step and draw), as well
as the total number of commands. We then regressed these
variables onto participants’ success (i.e., whether a partici-
pant had learned a pattern or not) in a mixed-effects logistic
regression, with random intercepts for participants.

Figure 4E shows the pattern difficulty estimates generated
from the regression model. The number of turn, repeat,
and i terms, as well as the number of mole appearances that
were explicitly encoded in the program code, were predictive
of more difficult patterns (Fig. 5). Relative to these effects,
the total length of the program was estimated to have a bene-
ficial influence. The repeat command allows for compressed
program representations and the loop counter variable i en-
ables the iterative growing of pattern parts such as in spirals.
Both of these terms are crucial building blocks that enable our
graphical programs to efficiently represent complex aspects
of patterns that go beyond a mere list of navigation instruc-
tions.

Discussion
People have the ability to learn about and generalize from
complex rules, which helps them to predict and act upon pat-
terns in the world. How do they accomplish this feat?

We investigated participants’ ability to learn and predict
sequential patterns generated from graphical programs in a
novel game we called “Track-A-Mole”. For this purpose, we


